Differentiation

1 The curve C has equation $y=\frac{1}{4 x}-\ln x$.
a Find the gradient of C at the point $\left(1, \frac{1}{4}\right)$.
b Find an equation for the normal to C at the point ($1, \frac{1}{4}$), giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

2 A curve has the equation $y=x \mathrm{e}^{-2 x}$.
a Find and simplify expressions for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
b Find the exact coordinates of the turning point of the curve and determine its nature.

3

The diagram shows the curve $x=\sqrt{\mathrm{e}^{y}+2}$ which crosses the x-axis at the point P.
a Find the coordinates of P.
b Find $\frac{\mathrm{d} x}{\mathrm{~d} y}$ in terms of y.
The tangent to the curve at P crosses the y-axis at the point Q.
c Show that the area of triangle $O P Q$, where O is the origin, is $3 \sqrt{3}$.
4 A rock contains a radioactive substance which is decaying.
The mass of the rock, m grams, at time t years after initial observation is given by

$$
\begin{equation*}
m=600+80 \mathrm{e}^{-0.004 t} \tag{3}
\end{equation*}
$$

a Find the percentage reduction in the mass of the rock over the first 100 years.
b Find the value of t when $m=640$.
c Find the rate at which the mass of the rock will be decreasing when $t=150$.
5 Differentiate with respect to x
a $\sqrt{\sin x+\cos x}$,
b $\ln \left(\frac{x-1}{2 x+1}\right)$.

6 A curve has the equation $y=(2 x-3)^{5}$.
a Find an equation for the tangent to the curve at the point $P(1,-1)$.
Given that the tangent to the curve at the point Q is parallel to the tangent at P,
b find the coordinates of Q.

7 A curve has the equation $y=\frac{2}{x^{2}-5}$.
a Find the coordinates of the stationary point of the curve.
b Show that the tangent to the curve at the point with x-coordinate 3 has the equation

$$
\begin{equation*}
3 x+4 y-11=0 . \tag{3}
\end{equation*}
$$

8

$$
\mathrm{f}: x \rightarrow a \mathrm{e}^{x}+a, \quad x \in \mathbb{R}
$$

Given that a is a positive constant,
a sketch the graph of $y=\mathrm{f}(x)$, showing the coordinates of any points of intersection with the coordinate axes and the equations of any asymptotes.
b Find the inverse function f^{-1} in the form $\mathrm{f}^{-1}: x \rightarrow \ldots$ and state its domain.
c Find an equation for the tangent to the curve $y=\mathrm{f}(x)$ at the point on the curve with x-coordinate 1 .

9 a Use the derivatives of $\sin x$ and $\cos x$ to prove that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}(\cot x)=-\operatorname{cosec}^{2} x \tag{4}
\end{equation*}
$$

b Show that the curve with equation

$$
\begin{equation*}
y=\mathrm{e}^{x} \cot x \tag{5}
\end{equation*}
$$

has no turning points.
10 A curve has the equation $y=(2+\ln x)^{3}$.
a Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
b Find, in exact form, the coordinates of the stationary point on the curve.
c Show that the tangent to the curve at the point with x-coordinate e passes through the origin.

11

$$
\begin{equation*}
\mathrm{f}: x \rightarrow \ln \left(9-x^{2}\right),-3<x<3 . \tag{3}
\end{equation*}
$$

a Find $\mathrm{f}^{\prime}(x)$.
b Find the coordinates of the stationary point of the curve $y=\mathrm{f}(x)$.
c Show that the normal to the curve $y=\mathrm{f}(x)$ at the point with x-coordinate 1 has equation

$$
\begin{equation*}
y=4 x-4+3 \ln 2 . \tag{4}
\end{equation*}
$$

12 A botanist is studying the regeneration of an area of moorland following a fire.
The total biomass in the area after t years is denoted by M tonnes and two models are proposed for the growth of M.
Model A is given by

$$
M=900-\frac{1500}{3 t+2} .
$$

Model B is given by

$$
M=900-\frac{1500}{2+5 \ln (t+1)} .
$$

For each model, find
a the value of M when $t=3$,
b the rate at which the biomass is increasing when $t=3$.

